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1 Executive summary

Active development proceeded in four of the five defined nesetpics:
1. Development of statistical methodology
e Implemented th&eversible Jumparkov chain as an alternative model selection tool
for multicomponent mixture models
¢ Implemented théarallel chainsalgorithm for accelerating convergence
¢ Implemented théarticle filter algorithm as an alternative to pure MCMC simulation

e Updated the posterior visualization tool using the GL-bagsualization Tool Kit with
a GTK+ GUL.

e Augmented the BIE architecture to for user defined likelthooutines.
e Updated the read/write methods to allow arbitrary SQL tablgout with named fields

2. Development of persistence technology

¢ Reviewed and redesigned current experimental persistigign based on preproces-
Sor macros
e Developed conceptual design for persistent store base¥Nir&oositories

e Began re-implementation of serialization and persistenethods



3. Astronomical applications

e Developed and implemented a GALFIT-based galaxy imageyaeglin discussion
with the GALFIT author, Chien Peng. Tests show that the nepliegtion, BIE—
GALFIT, is significantly less biased. Moreover, we have shaat standard ap-
proaches to model selection using GALFIT axfistatistics fails where Bayes ratio
methods succeed. We anticipate releasing a stand alongGBIE-T package in the
upcoming year.

e Developed and implemented semi-analytic method routine.

| will detail some of advances below and end with a list of Mdilmnes for Year 2.

Administrative issues

Although the start date is 3/1/06, we were notified of the awarJune, 2006. Work began in
early Summer by the PI followed by the entire team in Septenilige work reported here covers
approximately the first 7 months of activity.

Because of the award timing, we advertised the post-ddgbasition in Fall 2006 and have
recently hired Jorg Colberg, who will begin in Septembed20

2 Research milestones and summary

2-1 Persistence subsystem development

In the area of persistence and work flow management, we heaedbjectives at present: 1) restore
inter-command state save/restore to functionality, wéiileplifying the programmer’s interface and
making it more robust from a software engineering perspecf) add support for checkpointing
while running Monte-Carlo Markov chains; and 3) begin desifthe high level persistence tool
and interface that will present and manage the various ctatipas and lines of work a researcher
is investigating, providing support analogous to that reffeby integrated development environ-
ments to programmers.

We have nearly met the first objective. The new researchtassisas now mostly climbed the
learning curve on approaches to adding persistence (sat@) to Java. He picked apart our pre-
vious code and determined that it broke because it was gebnrproperties of particular compilers
that tend to change from release to release. We redesigaepatt and are also moving towards
using the better persistence support available from thesBo®+ libraries, which are widely used
and well-maintained. We reworked the way in which the progreer indicates which fields of a
class must be saved and in which the system works in the reegesmstomatically generated code
for the actual saving and restoring. The result is easiepffogrammers to use and will also better
help them avoid certain possible mistakes. We are now welitipoed to tackle checkpointing,
which should be relatively straightforward given workingye/restore, and then to dig in to the
intellectually more challenging issues of the high levelto



2-2 BIE-GALFIT
2-2.1 Motivation

The galaxy structure is evolving due to gravitational ansg dgnamical physics in the expanding
Universe. To understand the evolution of galaxy structased on their morphology has been
done by human eye, which led to the systems in use today sudnlase type. As galaxy sur-
veys have become deeper and more voluminous, researchersiyaored a variety of automatic
classification schemes.

There are two main approaches towards describing galangtste from the two dimensional
images. Non-parametric approaches estimate severaligsistich as total brightness, galaxy
half-light radius, concentration and asymmetry. However tesults are sensitive to the depth
of image. Thus one can underestimate the flux and size of dailaixies on noisy background
(Blanton et al., 2003). On the other hand, parametric apbrem use particular functional light
profiles(observationally motivated or sometimes physjaalotivated) for modeling galaxy light
distribution in the image. Although parametric approachk less flexible than non-parametric
one, it can capture the light which is at larger radius antssginificant contribution but not seen
clearly in the image. Also since we know that there are s¢eeramon types of luminous compo-
nents(disk, bulge, bar and spiral arms) which consist ofiiexy light distribution, the parametric
approach using different light profiles modeling each congmi can provide the information of
galaxy structures which vary over cosmic time scale andmi#pa density environment.

The various researches about galaxy structural paramied®es been done using two popular
parametric galaxy fitting code,A&&FIT and GM 2D . Recently HauRler et al. have done exhaustive
tests and comparisons betweeAl&IT and GM2D . They show that GLFIT offers a number
of important advantages overi&2D for galaxy fitting on large moderate dept5T/ACdata,
foremost its much higher speed and its robustness to neathyigs (Haul3ler, 2007).

GALFIT is a modular package written to perform two dimensional iemdgcompositions for
galaxies which are from nearby to distant (Peng et al., 20@)LFIT takes an input image and
outputs a model-subtracted images as well as a cataloguditstal parameters for an arbitrary
number of components. The predefined components includeohtee commonly used profiles.
Each predefined component has up to ten parameters but ddowa arbitrary number of user-
defined profiles and components. Some parameters may be gpemding on one’s application
but a typical fit will require greater than 12 parameterA\L&T optimizes the parameters of the
likelihood function using Levenberg-Marquardt downhitharithm. However it is possible that it
converges on a local minimum of likelihood. This become®sewhen the number of parameter
is large since the topology of likelihood can be multi-modAlso if the image quality is poor,
there may be no strong mode in likelihood function and it isdita know which combination of
parameter should describe the galaxy structure.

This motivates our Bayesian Inference Engine back end,wkilt allow GALFIT-based inves-
tigations of the full posterior not just the extremum modwe] avill establish proper prior distribu-
tions, which allow inferences using Bayes Factors over eewatiety of competing models and
hypotheses.



2-2.2 Galaxy image modeling

All tests and investigations described here sgetheticdata. We generate two simple, simulated
galaxies using MIDAS package. They are idealized galaxiés very highS/N. Secondly, we
select several high and lo®/Nisolated galaxy images from large, simulated ensemble lakgs

in Hauller (2007). They simulated the galaxy light profées putting them in an empty space.
This image was convolved with a real F850LP-band PSF defiroed GEMS dataset and appropri-
ate amount of noise was added to it. For more details, se8IEia(2007). We estimate me&iN
based on HauRler (2007)) using mean surface brightneggémased) within half-light radius re

1= mag+ 2.5Iog(22nr§) (1)

whereb/a is axis ratio. For examplg,= 20.5,24.0 correspond t&/N = 10,0.9 respectively. See
their figures for the scaling betwe&iNandp. The typical surface brightness of sky background
isu=225. All images are kindly provided by Dr. Daniel McIntosh and.Micheng Guo. Last,
we use one image with three galaxies with same Sérsic imdex4. The light profiles of those
galaxies are blended.

The most critical issue about galaxy fitting is to estimatg Is&kckground. Although we can fit
sky background as an extra parameter, this can lead to teediasult if the model light profile
does not exactly describe the real galaxy light distributiarhe estimation of sky background
is also affected by the relative size of galaxy to the imagegeially for the Sérsic profile with
long tail(i.e. n=4). Thus it is usually better to fix the sky background basedndependent
measurement(Haulller (2007)). We thus select relativalgilsgalaxies(e < 10) with the image
size of from 240 by 240 or 400 by 400.

For modeling these data, we use single Sérsic model fremFG and the different priors for
each parametersBIE currently provides 7 types of different prior. S8 website for more
information.

2-2.3 Synthetic galaxy images

All images are generated following Sérsic light profilewitvo different indicesn =1 andn =
4, which correspond exponential disk and de Vaucouleurxgakespectively. The radial surface
brightness profile of Sérsic function is given by

£(r) = Zeexp k()" 1) @
e

whereZ; is the surface brightness at effective radigisvhich is such that half of the total flux is

within re. The parametanis Sérsic index or often called concentration parametdrei is large,

it has steep inner profile, and a highly extended outer wimgersely, when it is small, it has a

shallow inner profile and a steep truncation at large radit®e K is not a independent variable

and related witm. Usually a good approximation ferfor n > 0.5isk = 2n—1/3+0.009876¢'n

(MacArthur et al. (2003)). Figure 1 shows Sérsic profile ddferentn using this approximation

for K.
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Figure 1: Sérsic surface brightness profiles for n=0.5, #,@&hd 8 (equation 2). The profiles have
been normalized at = 1.

For an exponential profile (n=1), 99.1% of the flux reside$imithe inner 4, and 99.8% of the
flux resides within the innerra. For an n=4 profile, 84.7% of the flux resides within the inner 4
and 88.4% of the flux resides within the inneg §%Graham and Driver, 2005).

2-2.4 Bayesian approach for modelling data
For the likelihood function, we construct the likelihoodfition using models in GLFIT .

exp(—3[D —M(8)]'W[D —M(8)))

P(D ‘ e) = (2T[)Npix/2| Y, ‘71/2

3)

whereD is data vectofl, x Ny), M () is a model vector anW is a weight matrix for pixel value.

For the prior for parameters, we mostly adopt the unifornompwith a range(top-hat) which
leads the likelihood dominated posterior probability dlsttion and basically the same case with
the maximum likelihood method, a least informative caseafdsian statistics. As we shall see in
later, the effect of prior becomes more significant when weltata where the information is weak
and degenerated. For example, in case of &Wdata, the informative priors for some parameters
help to obtain the robust estimate for those parameters.

We use QLFIT model with single Sérsic profile and different prior for bgarameter. In GL -
FIT , each Sérsic function has 8 free parameters in the fit: aendf the profilek, y¢), integrated
magnitudelfhor) Which is related wittxe, effective radiust), Sérsic indext), axis ratiop/a), po-
sition angle(PA) and diskiness/boxinegs@lso GALFIT can add another profile for setting up the
sky background with 3 free parameter:sky level, sky gradieK,Y direction. Some of parameters
can be hold to fix while fitting. See Peng et al. (2002) for magaeagal information. This is the
modelM (8) used in the likelihood function.

2-2.5 Selected results

In this section, we illustrate and interpret the BayesianNWCresults for all simulated galaxies
with different structural parameters. First we show vesaicases, which are two isolated galaxies
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Figure 2: The surface plot of light profiles from diskO and @pheft is exponential disk(n=1) and
right is spheroid(n=4).

Table 1: RRAMETER VALUES OF DISKO AND SPHO

Parameter diskO sphO
image size 20& 200 200x 200
position X

position Y

Total magnitude[magMot  20.0 20.0
Effective radius[pix] Re 10.0 10.0
Sersic index, n 1.0 4.0
AXxis ratio, b/a 1.0 1.0
Position Angle, PA[deg] 0.0 0.0

GALFIT best fit

Total magnitude[magM;st 20.0£0.00 200+0.01
Effective radius[pix]Re 10.124+0.04 1013+0.13
Sersic index, n D1+0.01 399+0.05
Axis ratio, b/a 099+0.00 100+0.01
Position Angle, PA[deg] - -

with very strong signal. we check BIE is working as we expect and try different techniques for
improving chain mixing and convergence. Then we comparedasat with GALFIT and study the
parameter correlation and uncertainties. We have alsmeegbimore realistic galaxy images with
high and lowS/Nand characterize ho®IE works for the strongly or weakly informative data. We
also show the effect of strong prior over weakly informatikelihood. Last we model the multiple
galaxies in one image, where their light profiles are blended

Two ideal galaxies: Disk and Spheroid

We show two galaxy images, diskO and sphO in Figure 2. Thputiparameter values are listed
in Table 1. The galaxies are modelled by Sérsic profile wifre@ parameters. The diskiness vs.
boxiness parameter is fixed to zero and the sky backgroumdlikealso hold to the known value.
However the sky background fitting is very robust for theskaxjas. We generate MCMC using
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Figure 3: The trace of states for diskO. Left is for pure Mptis-Hastings(MH) and right is for
simulated tempering. Although the simulated temperingigm takes longer time than pure MH
for advancing one step, it converges with smaller numbetesiion than pure MH. PA is not
converging since it could have any value.

different sampling algorithms IiBIE and confirm its feasibility. Three different algorithms are
Metropolis-Hastings, simulated tempering and parall@irch

Comparison between different algorithms

For the exponential disk, we ruBIE with Metropolis-Hastings and tempered simulation algo-
rithm. The chains for all model parameters are shown in [Eig@urAfter burn-in period (marked
as black vertical line in Figure 3) , all values are closelpvarging to true input parameters. The
left and right panels in Figure 3 are respectively MCMC witletkbpolis-Hastings and simulated
tempering algorithms for 7 free parameters. Since theg atios are both 1.0, there is no preferred
values for PA. Although the simulated tempering requiresrdmolis-Hastings ‘internal’ steps for
advancing one step, it converges more quickly than Metisgdhstings algorithm.

For spheroid, we show MCMC with simulated tempering andlpgrehain algorithms in Figure
4. In parallel chain simulatiorBIE runs several chains with different starting points and tem-
peratures. Each chains probe different regions of pararpesterior probability distribution and
the swaps between different chains start to occur basedativegprobability of each chain state.
In this experiments, parallel chain algorithm is generatiygre robust and faster than Metropolis-
Hastings and simulated tempering.

We show 1D marginalized distributions of parameters fok@snd sphO in Figure 5 and Figure
6 respectively. The parameter distribution in Figure 5 imgled from the chain with Metropolis-
Hastings and the parameter distribution in Figure 6 is froendimulations with simulated temper-
ing (black) and parallel chain (blue) algorithms. Theretare different error bars in the figures.
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Figure 4: The trace of states for sphO. Left is for simulagdgering and right is for parallel chain
algorithm. PA is not converging since it could have any value

The dotted lines are 1, 2 & 3 standard deviations from the @epevalues. The solid lines are
68.3,95.4 and 9973% percentiles from the median, which correspond to 1,2 €&aBdard devia-
tions in one dimensional parameter space. The solid vélities indicate the true input parameters.

Random sampling from the posterior is distributed arouedithe input parameters but the peak
is not located at the exact input value. In Figure 6 the pasterobability distributions for each
parameters are relatively smooth in case of simulated tangpalgorithm. This is because one
single chain probes the parameter space and chain transtiemooth. In parallel chain algo-
rithm, several chains start from different initial condiis probing different parameter spaces and
meanwhile, there is chain swapping which is based on théwelposterior probability of each
chain. This makes discrete jumps in the trace of parameterp@aks in the marginalized param-
eter distributions. There are slight offsets of medianéexgd values foM;q,re andn from the
true input parameters in simulated tempering algorithmweéier, the expected and median values
from parallel chain simulation are very close to the truauiqparameters although the offsetrgfs
slightly larger than that from simulated tempering simiglat This indicates that the parallel chain
effectively probes the parameter space. In Figure 5 we @saskght offsets of expected/median
values from the true parameters. Pure Metropolis-Hasfingises parameter space less efficiently
than simulated tempering and parallel chain algorithm.

In general the topology of parameter space for exponensklis smoother than spheroid given
the sameS/N. Since spheroid has a light profile with long tail, the cormaodeling including the
outer part of the profile is severely hampered by sky backgt@nd noise. For example, it is hard
to reveal clear uni-modality af, andn around true values for spheroid. This can be more clearly
seen in the 2D marginalized parameter distributions in sextion. For both diskO and sphO,
magnitude is the most robust parameter even though thelighs affset from the true magnitude.
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Figure 5: 1D marginalized parameter posterior probabdistribution for diskO with arbitrary
normalized factor. It is sampled by Metropolis-Hastinggoaithm.

Uncertainties and correlation of parameters

The errors fromBIE are consistent; all true input parameters are enclosedrnvathleast two
standard deviations (see Figs. 5, 6). As a comparisanfFG best fits and errors are listed in Table
1. The marginalized contours of parameter distributiohwifsets from the true input values for
Mtot,fe, N @ndb/a are shown in Figure 7 and Figure 8. The distribution in Figtiis sampled
from the simulation for exponential disk with Metropolisastings algorithm and the distribution
in Figure 8 is sampled from the simulation for spheroid witlrgdlel chain algorithm. In these
figures, black diamonds and error bars are thre K61 best fit and uncertainty. Each contour
level corresponds to 5, 10, 20, 30, 40, 50, 68.5, 90, 95, 99%tutative marginal percentages
respectively. The 5% contour means that 95% of samples @ngwtie contour. Thus these levels
correspond to confidence levelsAGHIT errors are estimated from parameter covariance matrix,
which is standard way of estimating parameter errors.

For diskO, the probability density peaks BFE and GALFIT best fits have offsets from the true
input parameters(see Figure 7). They are both mutual ctosaelue, however GLFIT estimates
for re has larger offset from the true valug= 10 thanBIE . GALFIT estimated zero errors fof;qt
andb/a (see Table 1). The one standard deviation error bam f@rely encloses the true value, but
the error bar fore does not. On the other hand, in cas®tE , the true input values are within 50%
marginalized confidence level except for the axis rafia, which should be inverse if it is larger
than 1. The size of 50% marginalized confidence level is coaipa to the size of GLFIT error
bar. However GLFIT error quotation forg is too small and the true, = 10.0 is barely enclosed
by three standard deviations.



Table 2: RRAMETER VALUES OF HIGH S/INGALAXIES

disk310 disk309 sph545 sph438
image size 40% 401 401x 400 400x 400 400x 400
S/IN ~ 8.0 ~7.0 ~ 8.0 ~ 8.0
Input parameter
position X
position Y
Total magnitude[magMio:  23.51 22.41 24.42 25.41
Effective radius[pix] Re 8.91 7.55 3.07 2.14
Sersic index, n 1.0 1.0 4.0 4.0
Axis ratio, b/a 0.19 0.94 0.59 0.45
Position Angle, PA[deg] 75.8 13.1 131.9 140.1

GALFIT best fit

Total magnitude[magMiot 2355+0.02 2243+0.01 2442+0.06 2489+04
Effective radius[pix] Re 9.11+0.28 729+0.11 325+0.3 7.054+7.66
Sersic index, n P5+0.09 097+0.03 347+0.85 1399+1165
AXxis ratio, b/a 014+0.01 098+0.01 046+0.06 0124+0.06
Position Angle, PA[deg] 78+051 6Q039+3252 1416+4.37 1679+3.37

For sphO, like the case of disk0, the density distributioakpef BIE and GALFIT best fits are
close to each other but offset from the true input paramet@iisparameter but are enclosed
within 50% marginalized confidence level. THBIKE provides statisticallyealistic errors of model
parameters for diskO and sphO.

One of the distinct features of Figure 7 and Figure 8 is theetation of parameters. In contrast
to the parameter fitting as A&FIT does, Bayesian inference naturally reveals the correlaifo
parameters by measuring correlation of two MCMCs for cqroesling parameters.

For disk0O, Mo, e, N andb/a are weakly correlated. Their absolute correlation coedffits
range from 0.17 to 0.55M;q; has negative correlation witty andn. re has positive correlation
with n and negative correlation with/a. For sphO M, re andn are strongly correlated. Their
absolute correlation coefficients range from 0.65 to 0.8R¢; has negative correlation with,
andn. re has positive correlation with. The parameter of Sérsic profile with largavhich has
highly concentrated central cusp and very shallow longrialter region significantly varies with
changing other parameters. This strong correlation ofrpaters is the main reason to hamper to
fit the data correctly.

Isolated galaxies with high S/N from large ensemble image

We select isolated galaxy images with hi§iN, which means that it's mean surface brightness
is lower than sky surface brightness. As in last section, wdehthose galaxy with single Sérsic
profile with the sky background level as a free parametere iput sky background level is 18.14
with r.m.s. deviation of pixel values, 3.78. de Jong et alpkasizes the importance of determin-
ing sky background in 2D galaxy image fitting(de Jong (19965 wuliler et al. compared several
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methods to determine sky background and found that, for lsiea galaxies, allowing 8. FIT

to determine the sky background appears as reliable asisbeinotal sky method, for real galax-
ies, complex structures that deviate from profile assumptimay affect sky estimation(Haul3ler
(2007)). Thus we leBIE determine the sky background in this study. The images oetxpmnen-
tial disks and spheroids are shown in Figure 9. And the al input parameters for those galaxies
are listed in Table 2. We use parallel chain algorithm fosthgalaxy images.

Isolated galaxies with low S/N from large ensemble image

We selected isolated galaxy images with I8AN, typically 2.0, which means that it's mean
surface brightness is higher than sky surface brightness.métel them with the same way in
section 4.2. The galaxies are barely seen by eye in the imagerc We intentionally choose these
extreme cases for characterizing the power and limBi& . Since the data quality of lov&/N
image is poor, signal and noise contribution to data are simqual. The Bayesian inference has
significant advantage compared with fitting technique ia taise. In Bayesian approach, the equal
or even more important question is not what the best paramate, but, for a given data, what the
relative significance of model parameter sets, one of whial be the true one, is. Since there is
more severe degeneracy of parameters in$dNdata than higls/Ndata, it is hard to model the
signal correctly. Then downhill method to fixd minimum is highly probable to fail to reach the
global minimum. However the Bayesian approach with MCMC pasbe and reveal the global
structure of probability distribution of parameters.

In addition to this, Bayesian approach has another advantalich is the usage of prior in-
formation for model parameters. The parameter posterioruktiplication of the likelihood and
the prior. Therefore the non-uniform prior can change th&tqxtor as different from the posterior
with uniform prior. In many cases, the likelihood dominaties prior. That is why the maximum
likelihood method works well. However if the likelihood ista strong function of parameters, the
prior can severely affect the result. The carefully sekégigor can be a very useful information or
cause a bias in the result. The I&Nimage is weakly informative and the likelihood may not be
a very strong function of parameters.

We will present a summary of these results in a later report.

Multiple galaxies

Here, we study more complicatedly structured data, which Ineehighly degenerated in param-
eter space. If the galaxies are close to each other in theeintlagir light profile may be blended.
Then the model with increased dimension in parameter spatbdse multiple galaxy may have a
degeneracy and complicated topology in parameter postaabability distribution. In this case,
the standargt®> minimization technique using downhill method may fail tadfiglobal minimum.

In real galaxy survey data, we often encounter the case oflbt light profile from multiple
galaxies. The solution is to simultaneously fit those galsxvith multicomponent models or mask
other galaxies with suitable masking mapal®IT can do these. However neither of them can give
us a way to fully understand the parameter probability sp&imultaneous fit by? minimiza-
tion with downhill method may be stuck to local minimum andage masking is only helpful in a
limited case. Bayesian inference on this case can be a vergrfud way to probe parameter prob-
ability space and to determine the significance of otherhmgpeaks and parameter uncertainties.

11



We show the example with three spheroids close to each attfégure 10. The image size is
321 x 269 with plate scale,.03 [arcsec/pixel]. Thus the physical scale of this image.G3%
8.07 arcset. They are all spheroids with n=4, but other parameters arkmawn. These galaxies
are modelled using single Sérsic profile with 7 free paransetach and fixed sky background level.
Thus total free parameters are 21. MCMC is constructed bgllpachain algorithm.

The 1D marginalized distributions offor these three galaxies are shown in Figurex:1y. of
each galaxies are shown on the top of each panel. The galayppat right corner is masked.

GALFIT result forn of these galaxies(galaxyl, galaxy2, galaxy3) aye= 3.96+ 0.04,n, =
4.52+0.14,n3 = 3.27+0.09 respectively. the estimation for galaxyl is reasondideiever even
three standard deviation error for galaxy2 is not large ghaw enclose 4.0, moreover, best fit
Seérsic index for galaxy3 is very different from 4.0 and eisatoo small.BIE estimations for these
galaxies aren; = 3.87,n, = 4.06 andnz = 4.15. They also have offsets from 4.0. However the
errors indicate that the estimations are realistic. The tnputn = 4.0 is enclosed within one
standard deviation for galaxy2 and two standard deviafiongalaxyl, galaxy3.

As we go higher dimensional parameter space, the parametealplity space becomes more
complex and it is hard to reach the global minimum using dalvmitethod since more parameters
are probably degenerated. Bayesian MCMC shows the real rpomvéhis problem. Although
BIE takes much longer time than the low dimensional case, itessfally samples the parameter
posterior.

2-2.6 Conclusions

e BIE-GALFIT is both feasible and advantageous for studyialgugy parameters.

e Under a wide variety of conditions, the parallel chain aitpon is more effective that the
other algorithms.

e Mg, e andn are strongly correlated in spheroid and weakly correlatedisk.

e For highS/Nimage, the marginalized posterior has multi-mo8E= error quotation is more
realistic than @LFIT and all true parameters are enclosed by two standard exardpte of
disk310, which is enclosed by three standard deviations.

e For low S/Nimage, the marginalized posterior has multiple mode. Tlheisbparameters,
Xe, Yo, Mtot, Of which posterior are smooth and uni-modal in higiN image, have multi-
mode.BIE error quotation is much better thamG-IT and all true parameters are enclosed
by two standard deviations except for disk115, of whiglb/a are not included in three
standard deviations.

e We test the effect of prior to posterior. For I®¥Nimage, the posterior is sensitive to prior.
Since the results can be biased using prior, we should ¢grefnose the prior or uniform
prior is better.

e For multiple galaxy with sama, GALFIT fails to fit simultaneously howeva3IE recovermn
which is close to the true within two standard deviations.
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2-3 SAMS-GALFIT

Semi-Analytic Models (SAMs) have been extensively usedudysthe formation and evolution of
galaxies (e.g. Kauffmann et al., 1999; Somerville and Pckn&999; Cole et al., 2000). In SAMs,
one starts with a catalog of merger trees which describe gkenably of individual dark matter
halos, and all other additional physical processes, e.g.cgaling, star formation and feedback,
AGN, galaxy mergers, etc., are also added into SAMs througpirécal functions. With SAMs,
one models the formation and evolution of a large number &bges. As the output of SAMs,
a catalog of the properties of the modeled galaxies is predluBase on the catalog many statis-
tical properties, for instance luminosity function, Tulysher relation, etc., can be obtained and
such properties can be directly compared with observed leaggtaxies. We build a SAM and
incorporate Bayesian Inference and Markov Chain to explwenodel parameters space.

2-3.1 Dark matter halo merger trees

We have developed sophisticated programs to generate tlgenteees using Monte-Carlo meth-
ods. For a given halo ma4, at a given redshifto, we calculate the conditional probability for
such a halo having a progenitor with with madds < M2 at an earlier redshif;. We generate
random numbers according to the conditional probabilitgltocate progenitor halo masses. We
implement a number of merger tree generating schemes aahyl thieel properties of these different
schemes. We briefly describe the methods and the comparisbisisection.

2-3.2 Binary tree without accretion

In the binary tree without accretion, at each time step a baker splits into two progenitors or
does not fragment but retain its mass. In practice, to mak&kbnte-Carlo method more efficient,
we change variables. In stead of redshift and mass, we choes&:(z) = & 0/D(z) as our time
variable, andS(M) = 6?(M) as our mass variable. The probability for taking a new £8jin a
time-stepAw is

1 Aw (Aw)?

P(AS Aw)dAS = Vo (AS)72 exp{ SRS
If we make a change in variables further= Aw/(2v/AS), the variablex becomes a Gaussian
distribution with zero mean and unit variance. By genepinGaussian random number, we
produce a new mass for one of the two progenitor halos anc#tenass if any is assigned for the
other progenitor.

In Figure 12, we show the conditional mass functions at fedshifts of halos generated by this
merger tree scheme and compare them with theoretical mGtedrly, this scheme over produces
halos in high redshifts. The reason for that is because tatk@ad does not consider another chancel
for halos to gain their their mass, smooth accretion.

} dAS, (4)

2-3.3 binary tree with accretion

In the binary tree with accretion, at each time step therésis @ mount of mass which is smaller
than the mass resolution is allocated as smooth accretienfoldw the method of Somerville et
al. (1999) which is described below to generate such mergest
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(i) Pick a masdv from the mass-weighted probability distribution equa#oThis mass can be
anywhere in the range @ M < M,. If M < Meg, We count it as accreted mass.Mf> Mg We
count it as a progenitor.

(i) Compute the unallocated maAM = M, — M.

(iii) If the unallocated masAM is larger tharMl,es, then it may or may not contain a progenitor.
To determine this, pick another magsfrom the distribution, but with the restrictiad < AM.
Depending on its mass, count it as accreted mass or a progasibefore. In either case, subtract
M from the mass reservoir.

(iv) Repeat this process until either

(a) the mass reservaiM falls below the minimum halo ma$48,cs, in which case it must aban-
don any aspirations of harboring a real progenitor and meistdoreted mass, or

(b) we have found a total of two progenitofd (> Meg), in which case the remaining mass is
considered to be accreted mass in accord with our ansatz.

(v) Each progenitor now becomes a parent, we calculated dimesastep, and repeat the whole
process.

We compare the realization of such a merger tree with theofyigure 13. This method as
pointed out by Somerville et al. (1999) under produces halos

2-3.4 n-branch trees

In the n-branch tree, a halo can fragment into an arbitrambar of progenitors and in the same
time some mass may be also allocated as accretion. To matenoHdirees, we follow the scheme
of the binary tree with accretion but continue picking pnoiggr masses until the unallocated mass
AM is less thamM,es, l00Ssening requirement of having less than two progeniieesl previously. In
Figure 14, we show the conditional mass function of such erdrges. It follows the theory nicely
especially at high redshifts, but has some over productidow mass bins at low redshifts.

2-3.5 Two-branch tree

We modify the program based on the one for the n-branch tieemake such a two-branch tree,
we only allow two or less progenitors to be generated. Ongeggmitor haldvl; and an amount of
accretion masblycchave already been randomly picked up, the rest Abdss- My — M1 — Maccis
directly assigned as the other progenitor halo. If both efgreviously randomly picked two masses
are larger thatMes, these two masses are allocated as the progenitors andsthaganatter it is
smaller or larger thaM,eg, is assigned to be accretion. We show the conditional masdifun in
Figure 15. The realization recover the theory nicely atedishifts.

2-3.6 Galaxy formation model

We developed a semi-analytic galaxy formation model badeatmmerger trees, including recipes
for hot gas and radiative cooling, star formation and feelpahemical evolution, stellar popula-
tion synthesis, and galaxy mergers.

After two halos merge, the galaxies contained by the hale®gpected to merge in a timescale
about dynamical friction timescale. In observation, gglmergers are found to be triggers of star
bursts and structure transformations. The physical peesesvolved in mergers depend on the
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mass ratio of the two progenitors. When a small halo mergeosa big halo, dynamical friction
and tidal stripping work; when two halos with comparable sesanerger, the old structure in each
of the objects will be destroyed. Because of this, peoplegmaize mergers into two groups, major
mergers and minor mergers. Usually, people use a chastatenass ratio to classify major/minor
mergers — if the smaller halo has mass lower than 1/3 (or @.8)eobigger halo, the merger is
classified as a minor merger; otherwise it is treated as armageoger. For different mergers, SAMs
have completely different treatments.

In our model, we assume the most massive galaxy in a newlyeddrglo becomes the central
galaxy. In stead of stick on 0.3 as the merger threshold, W teebe a free parameter. When two
halos merge, we start the merger clocks for all galaxiesrdttan the central galaxy in the halos.
In merger timescale, the galaxy will merge into the centedhgy. For minor mergers, we add all
the gas mass in the small galaxy into the primary galaxy amditadstellar mass into the bulge
of the primary galaxy. For major mergers, we add dark maltiargas, cold gas and stellar mass
from the two galaxies together. The shape of the remnantisrsp. A star burst is assumed to be
associated with a merger. It converts a fraction of cold gasstars instantaneously.

In summary, we have 13 free parameters in total in our curmerttel. They are:

e Vgt cooling cut-off

0o: amplitude of star formation efficiency

Vst turn-over circular velocity of star formation efficiency

n: power index of circular velocity dependence of star folioraefficiency

€o: amplitude of SN feedback

e Vi, turn-over circular velocity of SN feedback

e [,: power index of circular velocity dependence of SN feedback

o fmerg merger threshold for mass ratio

o kmerg merger timescale in units of dynamical friction time

® Bpurstmin: Star burst amplitude for minor mergers

® Opurstmin: Power index of mass ratio dependence of star burst in mirsvgers
® Bpurstmaj: Star burst amplitude for major mergers

® Opyrstmaj: POWer index of mass ratio dependence of star burst in magogens

With properly chosen parameters, our model reproducesdiagygluminosity functions at= 0 in
K-band and SDSS-bands presented in published literatSeaaérville and Primack, 1999; Kang
et al., 2005; Croton et al., 2006).
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2-3.7 Preliminary results

We have jointed our SAM with BIE. The likelihood of a paranretet is evaluated by comparing the
predicted K-band luminosity function with observationrdy, we use mock luminosity function
which is generated by the model with a given set of parametiesrelease only a few parameters
to study the behavior of the BIE-SAM. We found that 1) the EBBBEM works nicely for searching
the true parameter if only one parameter was set to be fremyrdg parameters in the model are
highly degenerate, so that the BIE-SAM hardly convergesue parameters if those parameters
were released. 3) With a big number of free parameters anchbige of prior for the parameters,
the model is still not able to reproduce the observed K-bamdrosity function.

Single parameter models

Using our model, with fixed parameters we generate a mockri€Hhaminosity function (solid
line in Fig. 16). To test our BIE-SAM, we set only one of thogephrameters free to fit the mock
luminosity function. The tests show that our code convetgéise true value very quickly.

multiple parameter fit

We now increase the dimensionality of the models and use tBeSBM to search the true
parameter values by comparing the K-band luminosity famctvith the mock. In the tests which
involve agp andVgs (the amplitude and the turn-over circular velocity of stamfiation efficiency),
a strong degeneracy shows up. The code spends long timewergerinto the true value. Figure
17 shows the posterior distribution of these two paramédters a test which only has these two
free parameters; Figure 18 shows the same distribution &rtimee free parameter test (these two
andn). In both cases, a number of modes and a long degeneracy paieent. Figure6 shows
a predicted K-band luminosity function witiy andVys very different from the true value. These
result show clearly that the SAM has strong degeneracy artimngarameters.

/lemphfitting observed luminosity function

We adopt our BIE-SAM to fit the real observed K-band luminpsiinction with all the 13 free
parameters. With very broad prior distribution of the paggens, the model is still not able to fit the
data well, especially in the faint end (see Fig. 20). Althowge may have poor mixing problem,
the failure to reproduce the faint end slope is a robust tesul

3 Milestones for Year 2

1. Statistical & MCMC development
Continued testing and benchmarking of Bayesian model setemethods, including Bayes
factors and Reversible Jump algorithms. further MP opiatian.

2. Persistence subsystem
We anticipate a working implementation of our persistendesgstem. this will support
recording computations and the relationships betweensmmd outputs, in a research log,
so that one can always go back and determine the origin ofasatdnow it was processed,
replaying from a previous state, but with different comnme&nd parameters—what we call
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what-if exploration. One can always go back to some previous timeéepr &d compute
forward in new directions, and checkpointing and recovery.

3. Star count modeling with SQL databases
We anticipate beginning on the final project, star countys®s of the Galaxy and its satel-
lites, interfacing to 2MASS and/or SDSS catalogs with la8§@l. databases. Because our
own galaxy and nearby local group companions can be studieatéful detail, we can probe
the features of Milky Way structure to refine theories of gatainteraction. We anticipate
working with a new graduate student colleague in the upcgryéar.

4. BIE-GALFIT
We are currently testing idealized data sets and benchnwatke efficiency of BIE in hy-
pothesis testing. During Year 2, we anticipate moving omference on real astronomical
data and publications demonstrating the methods and agiplc In addition, we are cur-
rently implementing computational optimizations thatlillow production analysis. We
anticipate a full-up stand-alone version of BIE to be redebi® the public in the upcoming
year.

5. Semi-analytic models

We will continue to improve the performance of our SAM implemtation and test its perfor-
mance. In Year 2, we plan to apply the Bayes Factor methogiatoest specific hypotheses
about the importance of various parameters in the underlgirysical mechanisms or used
to test the effect of different physical hypotheses, i.dfeknt parameterizations and com-
binations of physical processes, without the constragut tieir prescriptions be nested. We
have begun discussions with other SAM practitioners hogesbBIE with their codes as
well.
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Figure 6: 1D marginalized parameter posterior probabdisgribution for sph0 with arbitrary nor-
malized factor. Black line corresponds to the sampling byusated tempering algorithm and blue
line corresponds to the sampling by parallel chain algorith
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disk310 disk309

sphb45 sph438

Figure 9: HighS/Ngalaxy images. The top two is exponential disk and the botieoris spheroid.

Figure 10: The simulated image of multiple galaxies with 4.
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Figure 17: The predicted K-band luminosity function conguawith the mock. To produce the
shown curve, we adopig = 9.0 andVs; = 900, which are very different from the true values
(ap = 1.0 andVg = 300).
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Figure 18: Posterior distribution ofy (x-axis) andVs; (y-axis) from a two free parameter test. The
contours enclose from 10% to 90% of the distribution with li@%ement.
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Figure 19: Posterior distribution ofy (x-axis) andvs; (y-axis) from a three free parameter test.
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Figure 20: The K-band luminosity function produced by thetbiting parameters (in histogram)
is compared with real observation (in solid curve, Cole eR@D1). In big range of freedom of the
parameters, the model can not reproduce the luminosityitumm the faint end.
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